





# **Teaching a Computer to Integrate**

Joshua Isaacson

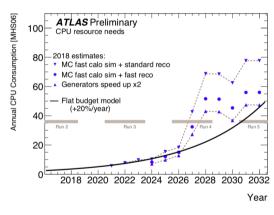
In Collaboration with: C. Gao, S. Höche, C. Krause, H. Schulz

Fermilab Al Jamboree

13 February 2020

#### Motivation

- LHC requires large number of Monte Carlo events
- Due to CPU costs, MC statistics will become significant uncertainty

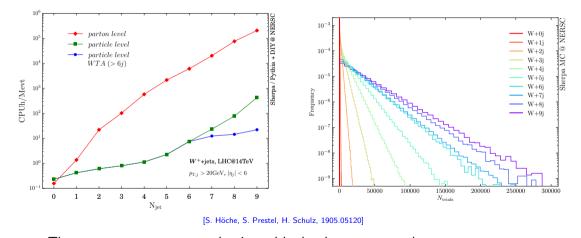


[ATLAS]



#### Motivation

J. Isaacson



- Time to generate an event dominated by hard process not shower
- Large computational cost for unweighting at high multiplicity

## Importance Sampling

### No Importance Sampling

$$\int_0^1 f(x)dx \xrightarrow{MC} \frac{1}{N} \sum_i f(x_i) \quad \text{iid } \mathcal{U}(0,1)$$

#### Importance Sampling

$$\int_0^1 \frac{f(x)}{q(x)} q(x) dx \xrightarrow{MC} \frac{1}{N} \sum_i \frac{f(x_i)}{q(x_i)} \quad \text{iid } q(x)$$

# Importance Sampling

### No Importance Sampling

$$\int_0^1 f(x)dx \xrightarrow{MC} \frac{1}{N} \sum_i f(x_i) \quad \text{iid } \mathcal{U}(0,1)$$

#### Importance Sampling

$$\int_0^1 \frac{f(x)}{q(x)} q(x) dx \xrightarrow{MC} \frac{1}{N} \sum_i \frac{f(x_i)}{q(x_i)} \quad \text{iid } q(x)$$

**Goal:** Choose a function q(x) such that  $\frac{f(x)}{g(x)} \approx 1$ .

- Best is q(x) = f(x), requires analytic inverse of CDF
- Acceptable to get close enough by fitting f(x) to some assumed form

## Previous Approaches

#### Generate From Events:

- Pros:
  - Fast evaluation of events
  - Easy to train using existing frameworks
- Cons:
  - Requires large sample of events to train
  - Under-trained  $\rightarrow$ Wrong cross-sections

#### Generate Events:

- Pros:
  - No events required to train
  - Under-trained  $\rightarrow$  Still correct cross-section
- Cons:
  - Requires Jacobian of Neural Network in inference



# Normalizing Flows

**Problem:** Numerical Jacobian of Network scales like  $\mathcal{O}\left(n^3\right)$ **Goal:** Develop a network architecture with analytic Jacobian.





# Normalizing Flows

**Problem:** Numerical Jacobian of Network scales like  $\mathcal{O}\left(n^3\right)$ **Goal:** Develop a network architecture with analytic Jacobian. Requirements:

- Bijective
- Continuous
- Flexible



# Normalizing Flows

**Problem:** Numerical Jacobian of Network scales like  $\mathcal{O}\left(n^3\right)$ 

Goal: Develop a network architecture with analytic Jacobian.

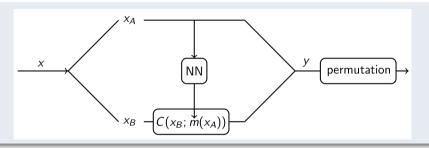
### Requirements:

- Bijective
- Continuous
- Flexible

#### **Answer:** Normalizing Flows!

- First introduced in "Nonlinear Independent Component Estimation" (NICE)
  [1410.8516]
- More complex transformations using splines in [1808.03856] and [1906.04032]
- Easy to implement using TensorFlow-Probability

## Normalizing Flows: Basic Building Block



Forward Transform:

$$y_A = x_A$$
$$y_{B,i} = C(x_{B,i}; m(x_A))$$

Inverse Transform:

$$x_A = y_A$$
  
$$x_{B,i} = C^{-1}(y_{B,i}; m(y_A))$$

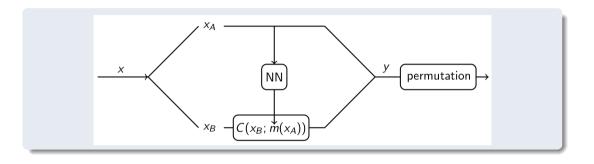
The  ${\cal C}$  function: numerically cheap, easily invertible, and separable.

Jacobian:

$$\left| \frac{\partial y}{\partial x} \right| = \begin{vmatrix} 1 & \frac{\partial C}{\partial x_A} \\ 0 & \frac{\partial C}{\partial x_B} \end{vmatrix} = \frac{\partial C(x_B; m(x_A))}{\partial x_B}$$

4

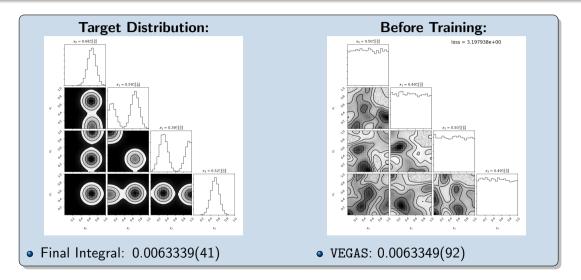
## Normalizing Flows: Basic Building Block



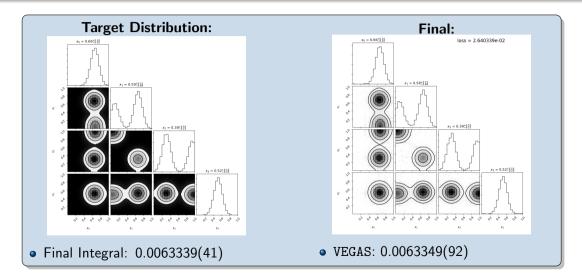
Jacobian is  $\mathcal{O}\left(\mathbf{n}\right)$ 

4

### Test Functions: 4-d Camel



### Test Functions: 4-d Camel



## Results

| unweighting efficiency           |         | LO QCD              |                     |                     |                     |                     | NLO QCD (RS)        |                     |
|----------------------------------|---------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| $\langle w \rangle / w_{ m max}$ |         | n = 0               | n = 1               | n = 2               | n = 3               | n = 4               | n = 0               | n = 1               |
| $W^+ + n \text{ jets}$           | Sherpa  | $2.8 \cdot 10^{-1}$ | $3.8 \cdot 10^{-2}$ | $7.5 \cdot 10^{-3}$ | $1.5 \cdot 10^{-3}$ | $8.3 \cdot 10^{-4}$ | $9.5 \cdot 10^{-2}$ | $4.5 \cdot 10^{-3}$ |
|                                  | NN + NF | $6.1 \cdot 10^{-1}$ | $1.2 \cdot 10^{-1}$ | $1.0 \cdot 10^{-3}$ | $1.8 \cdot 10^{-3}$ | $8.9 \cdot 10^{-4}$ | $1.6 \cdot 10^{-1}$ | $4.1 \cdot 10^{-3}$ |
|                                  | Gain    | 2.2                 | 3.3                 | 1.4                 | 1.2                 | 1.1                 | 1.6                 | 0.91                |
| $W^- + n$ jets                   | Sherpa  | $2.9 \cdot 10^{-1}$ | $4.0 \cdot 10^{-2}$ | $7.7 \cdot 10^{-3}$ | $2.0 \cdot 10^{-3}$ | $9.7 \cdot 10^{-4}$ | $1.0 \cdot 10^{-1}$ | $4.5 \cdot 10^{-3}$ |
|                                  | NN + NF | $7.0 \cdot 10^{-1}$ | $1.5 \cdot 10^{-1}$ | $1.1 \cdot 10^{-2}$ | $2.2 \cdot 10^{-3}$ | $7.9 \cdot 10^{-4}$ | $1.5 \cdot 10^{-1}$ | $4.2 \cdot 10^{-3}$ |
|                                  | Gain    | 2.4                 | 3.3                 | 1.4                 | 1.1                 | 0.82                | 1.5                 | 0.91                |
| Z + n jets                       | Sherpa  | $3.1 \cdot 10^{-1}$ | $3.6 \cdot 10^{-2}$ | $1.5 \cdot 10^{-2}$ | $4.7 \cdot 10^{-3}$ |                     | $1.2 \cdot 10^{-1}$ | $5.3 \cdot 10^{-3}$ |
|                                  | NN + NF | $3.8 \cdot 10^{-1}$ | $1.0 \cdot 10^{-1}$ | $1.4 \cdot 10^{-2}$ | $2.4 \cdot 10^{-3}$ |                     | $1.8 \cdot 10^{-3}$ | $5.7 \cdot 10^{-3}$ |
|                                  | Gain    | 1.2                 | 2.9                 | 0.91                | 0.51                |                     | 1.5                 | 1.1                 |

### Conclusions

### Traditional Integration

- Numerical integration and the need for Monte Carlo
- Current approaches not sufficient for LHC

### Conclusions

### Traditional Integration

- Numerical integration and the need for Monte Carlo
- Current approaches not sufficient for LHC

#### Normalizing Flows

- Avoid computational difficulty of Jacobian
- Using splines to approximate CDF

Reculto

### Conclusions

### Traditional Integration

- Numerical integration and the need for Monte Carlo
- Current approaches not sufficient for LHC

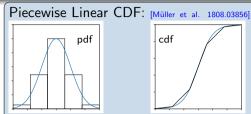
#### Normalizing Flows

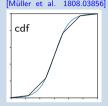
- Avoid computational difficulty of Jacobian
- Using splines to approximate CDF

#### Results

- Better than Sherpa up to 3i in all but Z channel
- Room still for further optimization
- Limited by computational resources to train, and not by algorithm

# Normalizing Flows: Piecewise CDF



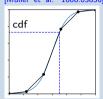


The NN predicts the pdf bin heights  $Q_i$ .

## Normalizing Flows: Piecewise CDF

#### Piecewise Linear CDF: [Müller et al. 1808.03856]





The NN predicts the pdf bin heights  $Q_i$ .

$$C = \sum_{k=1}^{b-1} Q_k + \alpha Q_b$$

$$\alpha = \frac{x - (b-1)w}{w}$$

$$\frac{\partial C}{\partial x_B} \Big| = \prod_i \frac{Q_{b_i}}{w}$$

# Normalizing Flows: Piecewise CDF

### Piecewise Linear CDF: [Müller et al. 1808.03856]







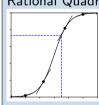
$$C = \sum_{k=1}^{b-1} Q_k + \alpha Q_b$$

$$\alpha = \frac{x - (b-1)w}{w}$$

$$\left| \frac{\partial C}{\partial x_B} \right| = \prod_{k=1}^{b} \frac{Q_{b_k}}{w}$$

The NN predicts the pdf bin heights  $Q_i$ .

Rational Quadratic CDF: [Durkan et. al. 1906.04032]



$$C = y^{(k)} + \frac{(y^{(k+1)} - y^{(k)})[s^{(k)}\alpha^2 + d^{(k)}\alpha(1 - \alpha)]}{s^{(k)} + [d^{(k+1)} + d^{(k)} - 2s^{(k)}]\alpha(1 - \alpha)}$$

$$\alpha = \frac{x - x^{(k)}}{w^{(k)}} \qquad s^{(k)} = \frac{y^{(k+1)} - y^{(k)}}{w^{(k)}}$$

Predict widths  $(w^{(k)})$ , heights  $(y^{(k)})$ , and derivatives  $(d^{(k)})$  of the knots of spline.